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Entanglement Complexity of Lattice Ribbons 
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We consider a discrete ribbon model for double-stranded polymers where the 
ribbon is constrained to lie in a three-dimensional lattice. The ribbon can be 
open or closed, and closed ribbons can be orientable or nonorientable. We 
prove some results about the asymptotic behavior of the numbers of ribbons 
with i1 plaquettes, and a theorem about the frequency of occurence of certain 
patterns in these ribbons. We use this to derive results about the frequency of 
knots in closed ribbons, the linking of the boundary curves of orientable closed 
ribbons, and the twist and writhe of ribbons. We show that the centerline and 
boundary of a closed ribbon are both almost surely knotted in the infinite-n 
limit. For an orientable ribbon, the expectation of the absolute value of the 
linking number of the two boundary curves increases at least as fast as q/~, and 
similar results hold for the twist and writhe. 

KEY WORDS: Ribbon; topological entanglement; knot; link; satellite knot; 
writhe: double-stranded polymer. 

1. I N T R O D U C T I O N  

S e l f - a v o i d i n g  w a l k s  h a v e  b e e n  s t u d i e d  as a m o d e l  o f  the  c o n f o r m a t i o n a l  

p r o p e r t i e s  o f  l i n e a r  p o l y m e r s  for  m a n y  y e a r s ?  1~ A l t h o u g h  th i s  m o d e l  

c a p t u r e s  fa i th fu l ly  t he  p r i n c i p a l  f e a tu r e s  o f  c o n n e c t i v i t y  a n d  e x c l u d e d  

v o l u m e ,  it c a n n o t  be  u s e d  to  e x a m i n e  q u e s t i o n s  a b o u t  d o u b l e - s t r a n d e d  

p o l y m e r s  ( s u c h  as  d u p l e x  D N A  ~'-I a n d  l - c a r a g e e n a n  13"41 w h e n  o n e  is 
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interested in the twisting of one strand about  the other. Bauer et all  2~ dis- 
cussed a continuum ribbon model '5' of polymers such as DNA in which 
each strand of the molecule is a boundary of the ribbon. For this model 
one can ask about the twist of one boundary curve about the other, or (for 
closed ribbons) about  the linking of the two boundary curves. Recently we 
introduced a lattice version of this model '6' in which the ribbon is a 
sequence of plaquettes (the interior and boundary of a unit square) in the 
cubic lattice Z 3 such that adjacent plaquettes meet at a common edge, and 
the set of plaquettes obeys some technical geometrical conditions ensuring 
that the object is a manifold. The ribbon can be open (homeomorphic  to 
a disk) or closed. If it is closed, it can be orientable (homeomorphic  to a 
cylinder, having two boundary curves) or nonorientable (homeomorphic  to 
a M6bius band, having one boundary curve). In the DNA literature '2'7' 
the interest centers on orientable closed ribbons, but we shall treat all three 
types in this paper. 

Lattice models such as the one discussed here are designed to 
investigate universal properties. That  is, they should give a good description 
of properties which will be the same for all systems which are double- 
stranded polymers dissolved in good solvents. They are not designed to 
give a faithful description of small-scale properties which depend on the 
details of the chemical structure of the polymeric system. 

This lattice model can be studied using Monte Carlo methods '6' 8, and 
some asymptotic results can be obtained rigorously. In ref. 6 and 9 we gave 
sketch proofs of some results about  the asymptotic behavior of the num- 
bers of open and closed ribbons, and about  the entanglement complexity 
of the ribbon. These results were confirmed numerically using Monte Carlo 
methods '8~ and the knotting and linking probabilities, as well as the writhe 
of the boundaries, were estimated. 

In this paper we prove several results about the asymptotic behavior 
of the numbers of ribbons and prove a pattern theorem for ribbons. The 
pattern theorem establishes that almost all sufficiently long ribbons contain 
translates of a given subribbon and this allows us to derive rigorous 
bounds on the knotting and linking probabilities, as well as on the twist 
and writhe of ribbons. The paper is arranged as follows. In Section 2 we 
give a definition of a lattice ribbon and prove some theorems about  the 
exponential growth of the numbers of ribbons. In Section 3 we prove the 
pattern theorem and in Section 4 we use this to prove that the knot 
probability of each boundary curve of an orientable closed ribbon goes to 
unity exponentially rapidly as the number  of plaquettes goes to infinity. 
The behavior of the knot probability for the boundary curve of a non- 
orientable ribbon is more complex, and we also consider this in Section 4. 
In Section 5 we consider linking of the two boundary curves of an 
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orientable closed ribbon and in Section 6 we discuss geometrical properties 
such as the twist and writhe. Finally, in Section 7 we discuss some open 
questions and summarize our results. 

2. D E F I N I T I O N S  A N D  A S Y M P T O T I C  B E H A V I O R  

We consider the simple cubic lattice Z 3 in which the vertices are 
integer points in R 3 and the edges join pairs of vertices which are unit 
distance apart. We shall write (xi, yi, z~) for the coordinates of a point i. 
(Throughout  the paper  we use a right-handed coordinate system.) 
A plaquette is the boundary and interior of a unit square whose vertices are 
in Z 3. We define an open ribbon as an ordered sequence of plaquettes, 
labeled i = 1, 2 ..... n, such that: 

1. Every two adjacent plaquettes ( i i - j l  = 1) in the sequence have a 
common edge. 

2. Two plaquettes i and j cannot be incident on a common edge 
unless l i -  jl = 1. 

3. Two nonadjacent plaquettes cannot be incident on a common 
vertex unless they are also incident on a common plaquette. 

4. Not  more than three plaquettes can be incident on a common 
vertex. 

We call the number  of edges that a plaquette has in common with 
other plaquettes the degree of the plaquette, so that an open ribbon has 
two plaquettes of degree 1 and all other plaquettes of degree 2. We write 
w,, for the number  of open ribbons with n plaquettes, where two ribbons 
are considered distinct if they can not be superimposed by translation. 

L e m m a  2.1, The number  of open ribbons obeys the inequalities 

3 x 4" - ' ~< w,, <~ 4 x 9 " -  (2.1) 

Proof. To obtain an upper bound on w n we consider the set of 
objects obtained in the following way. The first plaquette is in any of the 
three coordinate planes, and the second is incident on one of the four edges 
of the first plaquette, but is not superimposed on the first plaquette. The 
kth  plaquette is added so that it has an edge incident on one of the edges 
of the ( k -  1)th plaquette, other than the edge on which the ( k -  1)th and 
( k - 2 ) t h  plaquettes are both incident. In addition the kth  and ( k - 1 ) t h  
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plaquettes are not superimposed. This set contains all the open ribbons 
with n plaquettes, so 

w, <~ 36(3 x 3)"-2 (2.2) 

since the first plaquette can be embedded in the lattice in 3 ways, the 
second can be added to this in 4 x 3 ways (choose an edge in 4 ways, and 
an orientation in 3 ways), and subsequent ones in at most 3 x 3 ways 
(choose an edge in 3 ways, since one has already been used, and an 
orientation in 3 ways). 

To obtain a lower bound consider the number of open ribbons with 
n plaquettes which have the property that the barycenter of the ith 
plaquette has at least one coordinate larger, and no coordinate smaller, 
than the corresponding coordinate of the barycenter of the ( i - l ) t h  
plaquette. Such objects are certainly examples of open ribbons and give the 
inequality 

w,, >/3(2 x 2)"-1 (2.3) 

since the first plaquette can be embedded in the lattice in 3 ways and, when 
adding subsequent plaquettes, the edge to which the next plaquette is to be 
added can be chosen in 2 ways, and the orientation in 2 ways. II 

The asymptotic behavior of w,, is given in the next lemma. 

kemma 2.2. The limit 

lim n - ~ log w,, = log p (2.4) 
t ~  o 5  

exists with 4 ~< p ~< 9, and 

w,,~>p ' ' - ]  (2.5) 

Proos Consider two open ribbons with m and n plaquettes, and 
translate so that the barycenter of the first plaquette of one ribbon is 
coincident with the barycenter of the last plaquette of the other ribbon. The 
resulting set of objects will include all open ribbons with n + m - 1  
plaquettes, so that we have 

w,,,w,, >~ w . + . , _  t (2 .6 )  

The theorem follows ~~ from this inequality together with the bounds (2.2) 
and (2.3). II 

A directed rooted closed ribbon with 17 plaquettes is an ordered 
sequence of n plaquettes, i =  1, 2 ..... 12. obeying the above conditions except 
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that conditions 1 and 2 must be interpreted modulo n. Any cyclic permuta-  
tion (and the reverse permutation,  and any cyclic permutat ion of the 
reverse permutat ion) is also a directed rooted closed ribbon, and the 
resulting set of ribbons can be regarded as a single geometrical object 
which we call an undirected unrooted closed ribbon or, simply, a closed 
ribbon. Every plaquette in a closed ribbon has degree 2. 

Closed ribbons can be orientable (i.e., having two boundary curves) or 
nonorientable (having only one boundary curve). We write r,, for the 
number  of closed ribbons with n plaquettes (where two ribbons are 
considered distinct unless one can be superimposed on the other by transla- 

.o and " for the numbers of closed ribbons with i1 tion). We write i ,  r .  
plaquettes which are orientable and nonorientable, respectively. Clearly 

r , ,=r~ + r  " (2.7) 
t l  tl 

We now prove that open and closed ribbons grow at the same 
exponential rate, 

I _ e m m a  2.3. The numbers of open and closed ribbons are related 
by the inequality 

2nr,, ~< w,,_ i (2.8) 

Proof.. By deleting any of the n plaquettes in a closed ribbon with n 
plaquettes, we obtain an open ribbon with n - 1  plaquettes. The factor of 
2 comes from the two possible directions in the resulting open ribbon. II 

To obtain an inequality in the opposite direction, the idea is to unfold 
an open ribbon, show that open ribbons and unfolded open ribbons have 
the same exponential behavior and construct a subset of closed ribbons by 
a suitable concatenation of unfolded ribbons. 

We write (~i, rh, (~), i = 1 ..... n, for the coordinates of the barycenter of 
the ith plaquette in the open ribbon, and (Xk, Yk, Zk), k = 1 ..... 217 + 2, for 
the coordinates of the k th  vertex of the ribbon. Let 

x rain = infxk (2.9) 

where the infimum is over all vertices in the ribbon. Similarly let 

x max = sup Xk (2.10) 

Let j ,  be the smallest index such that the j~th plaquette contains a vertex 
with x coordinate equal to x min, and let J2 be the largest index such that 
the j2th plaquette contains a vertex with x coordinate equal to x max. We 
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call the plaquette labeled Jl(J2) the leftmost (rightmost) plaquette. An open 
ribbon is x-unfolded if the first and last plaquettes are parallel to the xy 
plane, ~j <~i ,  Vi> li, and 4,,> ~i, gi<17, or if the ribbon consists of a 
single plaquette in an xy plane. 

We next describe the progess of x-unfolding an open ribbon. We con- 
sider two cases. The leftmost plaquette can lie in the plane x = x "m and in 
this case Jt = 1. (If  jr  were greater than 1, then an earlier plaquette would 
have a vertex with x coordinate equal to xm~n.) One edge in this plaquette 
is incident on a second plaquette, and we call the edge of j~ which is 
opposite to this edge the f i rs t  edge. If the first edge is perpendicular to the 
x), plane, add three plaquettes parallel to the xy plane with barycenters 

,,.rain 1 I ( x m i n  3 .rain 5 -" - 3 ,  J/~ ~ _~), - 11,, ~ - 4 ) ,  and - (x  - ~ ,  I1, G 4). 
Otherwise add a plaquette, incident on the first edge and parallel to the xy 
plane, with barycenter having ~ coordinate equal to x mi" - 4 and two addi- 
tional plaquettes in the same plane with barycenters having ~ coordinates 

.rain 3 .vmin x - ~ and 
If the leftmost plaquette does not lie in the plane x = x ''~", then j~ = 1 

or j~ > 1. Ifj~ > 1, there are two subcases. If the plaquette j t  + 1 is in the 
plane " .mi~ X =.X , then we reflect the subribbon composed of the plaquettes 
j/, j~ - 1,..., 1 in the plane x = xmi'L If the plaquet te j l  + 1 is not in the plane 
x = x  m"~, then we reflect the subribbon composed of the plaquettes 
j~ - 1, j~ - 2 ..... 1 in the plane x = x rain + �89 We continue this process until 
j~ = 1. If  after this process the first plaquette lies in the plane x = x  m~n 
(where x mi~ refers to the leftmost plane of the partially unfolded ribbon), 
then we add the three plaquettes as described above. Otherwise, if the first 
plaquette lies in the x y  plane we add three plaquettes each lying in the x y  
plane, the ~ coordinates of whose barycenters a r e  x r a i n -  �89 .rain 3 .x - 5, and 
x,m~, s If the first plaquette lies in the xz plane, then add three plaquettes 
with barycenters at ( ~ - - l ,  l l l , ( i ) ,  (s 3 . - - 5 , 1 / ~ + � 8 9  and (~1--2,  
Ih + 4, q - �89 

We carry out the corresponding process for the rightmost plaquette, 
and eventually obtain an x-unfolded ribbon with n + 6 plaquettes, having 
the first and last plaquettes in the xy plane. 

We next unfold in the c-direction to obtain an (x, -_)-unfolded ribbon, 
which we define as follows: The first plaquette is parallel to the yz plane, 
the last plaquette is parallel to the xy plane, ~l ~<~<~, , ,  W < n ,  and 
( ~ < g , ~ . , , ,  V i > l .  Write ( ~ , q , ( A ,  i = 1  ..... n + 6 ,  for the coordinates 
of the barycenters of the plaquettes in the x-unfolded ribbon and 
(Xk, Yk, Zk) for the coordinates of the k th  vertex of the x-unfolded ribbon. 
Let 

z mi '=  infz k (2.11) 
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where the infimum is over all vertices in the x-unfolded ribbon. Similarly 
let 

.._max = sup zk (2.12) 

By a process of successive reflections in the appropriate planes x = x m i n  and 
x = x  . . . .  we obtain a ribbon for which ~ I<4 ;<4 , ,+6 ,  G~<G~<(,+6, 
1 < i < n + 6, and with the first and last plaquettes in the .x;v plane. Finally 
we delete the first plaquette and replace it with a plaquette in the y z  plane, 
with barycenter at (4 + �89 r/, ( -  �89 where (4, q, () are the coordinates of the 
barycenter of the deleted plaquette. The resulting ribbon is an (x,-)-  
unfolded ribbon with n + 6 plaquettes. 

Let w,*, be the number of x-unfolded ribbons with n plaquettes and let 
w~, be the number of (x, z)-unfolded ribbons with n plaquettes. Then we 
have the following result. 

Lemma 2.4. We have 

lim 17 - t l o g  w,*, = lim i1 - i  l o g  w~, = l o g  p 
/ t  ~ ze2 t~  ~ 

(2.13) 

Proof. Clearly w,*]~< w,*,, Vn > 1, since an (x, z)-unfolded ribbon can 
be converted to an x-unfolded ribbon by reorienting the first plaquette so 
that it lies in the xy plane. In addition, w,*, ~< w,, since every x-unfolded 
ribbon is an open ribbon. Using arguments analogous to those in ref. 11 we 
obtain then n',,-G<w~e ~ and w~<w~e ~ The result follows after 
taking logarithms, dividing n, and letting n go to infinity. II 

We next concatenate (x, z)-unfolded ribbons to form closed ribbons. 
Define a loop to be an open ribbon in which the first and last plaquettes 
each lie in a yz plane and whose barycenters have the same ff coordinate. 
Let the number of loops with n plaquettes be l,. 

Lemma 2.5. We have 

Proof. Clearly 

lim n - t  log l, = log p (2.14) 
t t ~  oc  

1,, <~ w,, (2.15) 

Each (x, z)-unfolded ribbon can be translated so that the barycenter of the 
first plaquette is at (0, 1/2, 1/2). Then the (x, z)-unfolded ribbons can be 
separated into classes according to their height, h, the ~ coordinate of the 
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barycenter of their last plaquette. Let w~(h) be the number of (x, z)- 
unfolded ribbons with n plaquettes and height h. The number Nc of these 
classes cannot exceed 11, the number of plaquettes. Concatenating (x, z)- 
unfolded ribbons with n/2 plaquettes with height h with members of the 
same class reflected in the plane x = x max gives a subset of loops with n 
plaquettes, so that 

l./> E w.*/2(h) 
h 

>1 W]/z(h* ) w~/2(h* ) (2.16) 

where h* is the value of h corresponding to the most popular class, i.e., the 
smallest value of h such that w*,,/2(h*)>1 w*,,/2(h), Vh. Since the most popular 
class must contain at least a fraction 1/Nc of the objects, we have 

(2.171 
k n/2 J 

Taking logarithms, dividing by 17 and letting n ~ ~ in (2.15) and (2.17), 
and using (2.13) gives (2.14). | 

T h e o r e m  2.6. We have 

lim n-1 log r,, = log p (2.18) 

Proof. Let l,,(a, b) be the number of loops with n plaquettes, having 
the barycenter of the first plaquette at (0, 1/2, I/2) and the barycenter of 
the last plaquette at (a, b, 1/2). Loops can be subdivided into classes accord- 
ing to a and b, and there are no more than n 2 such classes. Concatenating 
loops in each class with loops in the same class reflected in the plane z = 0 
gives 

(1n/2 ~2 (2.19) r,, >1 ~ I,,/2(a, b) l,,/z(a, b) >1 \nZ/4j 
ct, b 

Then (2.18) follows from (2.19) and (2.8). | 

Theorem 2.7. Orientable and nonorientable ribbons grow at the 
same exponential rate. 

Proof. We define the top (bottom) plaquette of a ribbon as that 
plaquette whose barycenter has lexicographically largest (smallest) coor- 
dinate. In general the x coordinate of the barycenter of the top plaquette 
can be x .... or x .... - �89 depending on whether or not this plaquette lies in 
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the rightmost plane (x = x  .. . .  ) of the ribbon. We define a modified closed 
ribbon as a closed ribbon which has one and only one plaquette in the 
plane x = x m~n, incident on two plaquettes parallel to the xy plane, and one 
and only one plaquette in the plane x = x  ""a', also incident on two 
plaquettes parallel to the xy plane. For  a modified ribbon, the x coordinate 
of the barycenter of the top plaquette is x m"x and that of the bot tom 
plaquette is x min. Every closed ribbon with n plaquettes can be converted 
to a unique modified closed ribbon by adding the same number  (inde- 
pendent of 17) of additional plaquettes, and this construction preserves 
orientability. That  is, every closed ribbon with n plaquettes can be mapped 
to a modified closed ribbon with n + 2/plaquet tes ,  where 1 is a constant. 
Details of this construction are given in the Appendix. Any two non- 
orientable ribbons co], and ~o~,, can be converted into two modified 
nonorientable ribbons o3], and r by this construction. These modified 
nonorientable ribbons can be concatenated using the construction 
illustrated in Fig. 1 to form a modified nonorientable r ibbon with 7i + n3 + 8 
plaquettes. Not  all such ribbons can be obtained by this construction. If we 
write i~', for the number  of modified nonorientable ribbons with n 
plaquettes, we have the inequality 

. . . . . .  (2.20) r n r m  ~ rn + m + 8  

Since r~i ~< w,, _ l ~< 36 x 9 " -  3, it follows ~ 101 that the limit 

=" = log/~ ~< log 9 (2.21) lim n - i log i ,, 
n ~  oo 

exists. Next we show that 

lim 17 - i  log r,,"-- log/~ (2.22) 
i1 ~ ,:r 

We have the immediate inequality s~: ~< r:: since every modified ribbon is a 
ribbon. The construction described in the Appendix establishes that 
rii~<Ci+_,l for a fixed value of /, independent of 17. Taking logarithms, 
dividing by ii, and letting n go to infinity then establishes (2.22). 

j 
j j ~ - ~ f j  

f ~ f J / J /  

f f f f f  

Fig. 1, Concatenation of two nonorientable ribbons to obtain a nonorientable ribbon. 
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/ / 

Fig. 2. The nonorientable closed ribbon r. 

Consider  the non-or ientable  r ibbon r with 12 plaquet tes  shown in 
Fig. 2. Any modified orientable  r ibbon c~,, with n plaquet tes  can be 
concatena ted  with this r ibbon r by t ranslat ing so that  the top plaquet te  of  
c~,, is coincident with the b o t t o m  plaquet te  of  r and deleting the two 
coincident plaquettes.  The resulting r ibbon is nonor ientable  and has 77 + 10 
plaquettes.  Hence 

. . . . .  (2.23) I n ~ I n + 2 1 +  10 

Similarly, every modified nonor ien tab le  r ibbon can be concatena ted  with r 
to give an orientable  r ibbon,  so that  

r',', ~< ri' , + 2/+ Jo (2.24) 

The two inequalities (2.23) and (2.24), together  with (2.22), show that  
r',',-=~ "+'~''~ and, using (2.7) and (2.18), we have 

= "" l o g p  (2.25) �9 " lira 17 - t log i ,, = lim 17 - 1 log i ,, 

which concludes the proof. ] 

3. A P A T T E R N  T H E O R E M  

In this section we state and prove  a pat tern  theorem for open r ibbons,  
similar to Kesten 's  pa t tern  theorem for self-avoiding walks. ~t21 The  p r o o f  
that  we shall give is closely related to an unpubl ished p roof  of  Kesten 's  
theorem due to Hammers l eyJ  J31 

We begin by defining a factori-ation of an x-unfolded ribbon.  The  rib- 
bon has a cutting plane if there are two successive plaquet tes  k and k + 1 
in the xy plane, such that  ~ k + l = ~ * + - - l , ~ l * + J = q * , ( * + l = ( k ,  and 
~ k , ( * + ~ ,  V l : ~ k , k + l .  The  cutt ing plane is the plane x =  
(~*+~k+1) /2 .  If  an x-unfolded r ibbon has no cutt ing planes, then it is a 
prime ribbon. Let q,, be the n u m b e r  of  pr ime r ibbons with n plaquettes.  By 
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factorization at the first available cutting plane we obtain the generalized 
renewal equation 

n - -  l 

w,*,=q,+ Z q,,w*, .... (3.1) 

which can be rewritten in terms of the generating functions 

and 

a s  

W Ix)= Y, * , ,  w ,,x (3.2) 
n > O  

Q ( x ) =  y '  q,,x" (3.3) 
n > O  

W*(x) = Q(x)  (3.4) 
1 - Q ( x )  

We define an open ribbon to be a bridge ribbon if the first plaquette is in 
either the xy plane or the xz  plane, ( l  <~i ,  Vi> 1, ~,, >~ (i,  V i < n .  Let b,, be 
the number of bridge ribbons (up to translation) with n plaquettes, and 
notice that w~ ~< b,,. By adding two plaquettes, a bridge ribbon can be con- 
verted to one in which the first and last plaquettes are in the same plane 
(either the xy or xz  plane) so that b,,~<2w,*,+ 2, where the factor of two 
comes from the possible rotation from the .x3' to the x z  plane. Therefore 

lim n - 1 log b,, = log p (3.5) 
t! ~ .zc 

Defining the generating function 

B(x)  = y" b,,x" (3.6) 
H ~ ' O  

we also see that if B(x)  diverges at x = I/p, then W*(x) also diverges at 
x =  lip. Then' i t  follows from (3.4) that Q ( 1 / p ) =  1. 

Defining W ( x ) =  Z,,>0 ~t,,.x , we have the following inequality. 

L a m m a  3.1. We have 

e2B(x) 
W(x)  < . - -  (3.7) 

X 

822/85/1-2-8  
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Proof. The proof  is almost identical to the proof  of Corollary 3.1.8 in 
ref. 1, p. 61. Note that we define generating functions starting at the 17-- 1 
term, which leads to minor differences from ref. 1. Alternatively, see 
ref. 12. l 

Since W(x) diverges at x =  lip [which follows from the inequality 
(2.5)], B(x) also diverges at x =  l/p, and hence W*(x) diverges at x =  l/p. 

A pattern is any finite open ribbon, and a prime pattern is any finite 
prime ribbon. Consider a prime pattern P and the set of open ribbons with 
17 plaquettes, not containing a translate of P. We write w,,(/5), b,(P),  w,+,(/5), 
and q,,(/~) for the numbers of open ribbons, bridge ribbons, x-unfolded rib- 
bons and prime ribbons, respectively, with 17 plaquettes, not containing the 
prime pattern P. Similarly we write W(x; fi), B(x; P), W+(x;/5), and 
Q(x; fi) for the corresponding generating functions. We note that 

w,,(/5) w,,(P) >1 w,,,+,,_ l(P) (3.8) 

so that W(x; P) diverges at x = l/p(/5) where p(P) <<.p, since w,,(/5) ~< w,,. 
Using the same arguments as in Lemma 3.1, we have 

c2B(x;/~1 
W( x; /5) < < . -  (3.9) 

X 

so, since B(x;/5) <<. W(x;/5), Vx>~O, B(x; fi) also diverges at x =  l/p(/5), 
and converges for all x < 1/p(/5). Both B(x; P) and W+(x;/5) have the same 
asymptotic behavior [by an argument exactly similar to that given above 
for B(x) and W*(x)], so W*(x; fi) diverges at x = l/p(~5) and converges for 
all x < l/p(~5). 

Since P is prime, and a prime pattern cannot be split between two 
prime components of an x-unfolded ribbon, we have 

W+(x;/5) _ Q(x;/5) 
1 - Q ( x ;  f i )  (3.10) 

Since q,,(/5)< q,,, for at least one value of m, and all qk are nonnegative, 
Q(1/p;ff)< 1. This implies that W*(1/p;/5) is finite, and hence that 
p > p(/5). This is a key result which we state as follows. 

T h e o r e m  3.2. Open ribbons which do not contain the prime 
pattern P at least once are exponentially rare in the set of open ribbons. 

In fact, if a pattern occurs on almost all ribbons, it occurs frequently 
on almost all ribbons. We state this more precisely in the next theorem: 
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T h e o r e m  3.3. Let w,,(P;e) be the number  of open ribbons on 
which the pattern P occurs at most Lena times. Then there exists a positive 
number  a(P) such that 

lim sup 17 -1 log w,,(P; e) < log p (3.11 ) 

for all e<a(P). 

Proof The proof  of this theorem follows the idea of the proof  of 
Lemma 7.2.5 in ref. l, p. 236. | 

There is a corresponding result for closed ribbons, which we state as 
follows. 

Theorem 3.4. Let r~ e) be the number of orientable closed rib- 
bons on which the pattern P occurs at most I_en] times. Then there exists 
a positive number  a(P) such that 

lim sup n - l log ri',( P; e ) < log p (3.12) 
n ~ ,9-_, 

for all e<a(P). 

Proof. Consider any orientable closed ribbon with n plaquettes in 
which the pattern P occurs at most [_en_] times. Delete the plaquette with 
lexicographically smallest barycenter, giving an open ribbon with 17 - 1 pla- 
quettes. Since deleting a plaquette cannot create a pattern, the number of 
occurrences of P in the open ribbons is at most L e n J < ~ L e ( n - l ) d  + 1 
Hence 

I "  o . 2 ,,(P,e)<~w,,_l(P;e+(n 1) - l )  (3.13) 

Taking logarithms, dividing by n and letting 17 --* oo in (3.13), and using 
(3.11) gives (3.12). | 

An exactly analogous theorem holds for the case of nonorientable 
closed ribbons, and the proof  is essentially identical. 

4. KNOTS IN CLOSED RIBBONS 

In this section we shall be concerned with knots in closed ribbons. 
Each plaquette in a closed ribbon has four edges, two of which are each 
incident on two plaquettes (which we call ribbon edges) and two of which 
are incident on only one plaquette (which we call boundary edges). We next 
define the center line of the ribbon. This is a piecewise linear simple closed 
curve composed of line segments joining the barycenters of plaquettes to 
the midpoints of the two ribbon edges of that plaquette. We prove that, as 
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n goes to infinity, the probability that the center line of a closed ribbon is 
knotted goes to unity exponentially rapidly. This implies that each bound- 
ary curve of an orientable ribbon is knotted with probability 1, and that 
the boundary curve of a nonorientable ribbon is a satellite 1'4) of a non- 
trivial knot with probability 1, in the n ~ ov limit. (A satellite knot is a 
simple closed curve in the interior of a solid torus which is embedded in R 3 
in such a way that the centerline of the torus is a nontrivial knot, with the 
restriction that the simple closed curve does not lie in a 3-ball contained in 
the solid torus. See the figure on p. 111 of ref. 15.) 

We first prove a preliminary lemma. 

L e m m a  4.1. Let r,~ be the number of orientable closed ribbons 
with n plaquettes having unknotted center line. Then the limit 

lim n - l log r,~ = log po(q~,.) <.% log p (4.1) 
I z ~  cr~ 

exists. 

Proof.. Every orientable closed ribbon with n plaquettes and un- 
knotted centerline can be converted (using the construction described in 
the Appendix) to a modified orientable ribbon with i f= n + 2l plaquettes, 
and the centerline of this modified ribbon is also unknotted. We write 
r,~ for the number of modified orientable ribbons with unknotted center 
line, and n plaquettes. Clearly 

. o  +2,(~,.) ,~,o(~) ~< , , ,(~.) ~< ~,~ (4.2) 

Every pair of modified orientable ribbons with unknotted centerline can 
be concatenated to form a modified orientable ribbon with unknotted 
centerline, as follows. Call the two modified ribbons c~], and c~, ,  where the 
subscript measures the number of plaquettes. Let (~1, q~, (])  be the coor- 
dinate of the barycenter of the top plaquette of cO],. Translate c~-',, so that 
the coordinates of the barycenter of its bot tom plaquette are ( ~  + l, 
~/,, (j). Delete the top plaquette of c~], and the bottom plaquette of c~,, and 
add two plaquettes parallel to the xy plane with barycenters at ((~ + �89 r/,, 
G + � 8 9  and (~l + �89 /']l, (l --1). The resulting ribbon is orientable and 
closed, having unknotted centerline, and n + m plaquettes, so that 

, ,:(~c) f,:,(~,.) <~ e, ~ + ,,(~,.) (4.3) 

which implies the existence of the limit 

lim n - l  log ,,=~(~b,.) = log/~~ (4.4) 
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This, together with the inequalities in (4.2) gives (4.1), with /7~ 

p~ I 

For nonorientable ribbons the analogue of Lemma 4.1 is as follows. 

Lemma 4.2. Let rii(~bc) be the number of nonorientable ribbons 
unith n plaquettes having unknotted centerline. Then the limit 

lim n -]  log ri',((~,.) = log p"(~b,.) ~ log p (4.5) 

exists. 

Proof  The proof is similar to that of the previous lemma. Each non- 
orientable ribbon with unknotted centerline can be converted into a corre- 
sponding modified ribbon by adding plaquettes as outlined in the 
Appendix. Two modified nonorientable ribbons with unknotted centerlines 
can be concatenated, as shown in Fig. I, to form a modified nonorientable 
ribbon with unknotted centerline, giving a generalized supermultiplicative 
inequality. The existence of the limit follows immediately from this 
inequality. I 

We now come to the main theorem of this section. 

Theorem 4.3. Orientable closed ribbons with unknotted centerline 
are exponentially rare. That is, 

p~ < p (4.6) 

Proof. To prove that the centerline of an orientable closed ribbon is 
knotted it is sufficient 1~6"17) to prove that the ribbon contains a prime 
pattern T, say, such that the centerline of T (suitably extended) and 
the union of the unit 3-cubes dual to the vertices of T form a knotted ball 
pair. We call such a pattern a knotted pattern. The union of the dual 
3-cubes at the vertices of T must form a 3-ball, and the centerline of T 
must be extended so that its boundary points are in the boundary of the 
3-ball. This extension of the centerline of T to meet the boundary of 
the 3-ball is ,necessary so that the 1-ball is properly embedded in the 
3-ball. 

Let i, j, k be unit vectors along the positive x, y, z axes, and consider 
the sequence of edges T t defined as follows: 

T, : { i, i, i, j, k, k, k, - j ,  - j ,  - k ,  - k ,  - j ,  - k ,  - k ,  j, j, .L 

- i , k , k ,  --j, i, i,i, i, --j, i, i} 
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D Z 

Fig. 3. The prime pattern T. The centerline of this pattern, suitably extended, and the union 
of the 3-cubes dual to the vertices of 7", form a knotted ball pair. 

The boundary of the ribbon T, shown in Fig. 3, consists of the edges in TI 
and the edges in a second sequence T2 defined as follows: 

T2: { - j , i , i , i , i , j , j , k , k , k , - j , - j , - k , - k , - j , - k , - k , j , j , j , j ,  

- i ,  - i ,  - i ,  - j ,  k, k, k, i, - j ,  i, i, i, i, i, - k ,  i, - j }  

Both sequences of edges start at the same point, say the origin. If we con- 
struct dual unit 3-cubes at each vertex of T, the union of these 3-cubes is 
a 3-ball, B3(T). If the centerline of T is suitably extended it forms a 1-ball 
B~(T) properly embedded in the 3-ball B3(T). The ball pair (B3(T), Bl(T))  
is knotted, i.e., it is not homeomorphic  to the standard ball pair. If  the 
ribbon contains the prime pattern T, then the prime knot  decomposition of 
the centerline of that ribbon contains a ( + )  trefoil knot, and hence is 
knottedJ ~4. ~6~ 

The set of orientable closed ribbons with n plaquettes whose center- 
lines are unknotted is a subset of the corresponding ribbons which do not 

o o - -  contain the pattern T defined above, i.e., r,,(e},.) <~ r,,(T). Using Theorem 3.4, 
we have 

p"(~b,.) < p (4.7) 

which completes the proof. II 

In fact, from Theorem 3.4, all except exponentially few orientable 
closed ribbons contain a positive density of copies of the knotted pattern 
T in the n--* Go limit, so that not only the centerline of the ribbon is 
knotted, but the knot has high complexity, as measured by such good 
measures of  knot complexity ~v~ as crossing number, unknotting number, 
minor index, braid index minus one, genus, and the spans of knot polyno- 
mials. In addition, one can construct patterns corresponding to any knot 
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type, so that one is assured that all knots will eventually appear with 
positive density in the center lines of sufficiently long ribbons. 

There is an exactly analogous result for nonorientable ribbons, which 
we state as the following Theorem: 

Theorem 4.4. Nonorientable closed ribbons with unknotted center- 
line are exponentially rare. That is, 

p"(~b,,) < p (4.8) 

Proof, The proof is essentially identical to that for the orientable 
case, and uses the same pattern T. | 

Once again the pattern occurs with positive density on almost all rib- 
bons, so the centerline has high knot complexity and, similar arguments 
can be used to prove that any knot type occurs with positive density for 
sufficiently long ribbons. 

We now consider knots in the boundaries of ribbons, rather than in 
their centerlines. We first note that each boundary curve, and also the cen- 
terline, of an orientable closed ribbon has the same knot type. This is easy 
to see since the pushoff across the ribbon defines the required ambient 
isotopy. Hence the probability that each boundary of an orientable closed 
ribbon is knotted goes to unity exponentially rapidly as n goes to infinity. 
In addition, the boundary has high knot complexity. 

For nonorientable ribbons, if the center line is knotted then the 
boundary must also be knotted, since it is a (2, 2k + l) satellite (in fact a 
cable ~ 14. ~5~) of the centerline knot. Hence, for sufficiently large n, almost all 
nonorientable ribbons have boundaries which are satellites of nontrivial 
knots. Even if the centerline of the ribbon is unknotted, with high proba- 
bility for large n the boundary is a nontrivial (2, 2k + 1) torus knot. This 
phenomenon is considered in the next section. 

If the boundary of a nonorientable ribbon has 12 or fewer crossings, 
then the centerline must be unknotted, and the boundary knot must be an 
ordinary (2, 2 k +  1) torus knot. This is because all torus knots [with the 
exception of ' the unknot ( i ,1)]  and all (2, 2k + 1) satellites of knots are 
prime knots. <18~ In the census of prime knots (Lg) the first satellite knots are 
two 13-crossing satellites of the trefoil knot. For  orientable ribbons the 
boundary curves form a (2, 2k) satellite link of the centerline. If this 
boundary link has eight or fewer crossings then the center line must 
be unknotted, and the boundary link must be an ordinary (2, 2k) torus 
link. 
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5. L INKING OF THE B O U N D A R Y  C U R V E S  AND 
CENTERLINE OF CLOSED R IBBONS 

The boundary curves of orientable closed ribbons can be linked as 
well as being individually knotted. In this section we first investigate the 17 
dependence of the linking number of these boundary curves. The linking 
number can be thought of as a three-dimensional analogue of winding 
number. See ref. 15, pp. 132-133. 

Consider an orientable closed ribbon, and orient the two boundary 
curves in parallel. Project the ribbon onto R 2 in a direction chosen such 
that all crossings of the boundary curves are transverse. We can associate 
a sign to each crossing as shown in Fig. 4. The linking number of the two 
boundary curves is defined as 

N 

Lk=�89 ~ ak (5.1) 
k = l  

where the sum is over the N transverse crossings between the curves, and 
ak = +_ 1 is the sign of the kth crossing as determined by the sign conven- 
tion of Fig. 4. 

Consider the pattern P of 31 plaquettes shown in Fig. 5 with sub- 
boundaries P~ and P2 given by 

P~: {i , i , i , i ,k ,  - i ,  - i ,  - i , k , i , k , j , i , i ,  - k , i , i ,  - j , k , i ,  - k ,  

i, - k ,  - i ,  - i ,  - i ,  - k ,  i, i, i, i} 
and 

Pz: {.Li, i , i , i ,k,  - i ,  - i ,  - i , k , i , i ,  - j , k , i ,  - k , i , k , j , i , i ,  - k , i ,  

- k ,  - i ,  - i ,  - i ,  - k ,  i, i, i, i, - j }  

both starting at the same point, say the origin. Label the plaquettes sequen- 
tially as p~ to P3~. Consider an orientable closed ribbon R which contains 

Fig. 4. The sign convention for crossings. 
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Fig. 5. The prime pattern P. 

the pattern P. By deleting the two plaquettes (P5 and P27) with barycenters 
having coordinates (with respect to the first vertex being at the origin) 
(4, l, 1) and (5, �89 �89 and adding the two plaquettes parallel to the xy plane 
with barycenters at (9, ,:,l 0) and (9, ~,_ 1), we obtain two ribbons P' and R', 
and we say that R has been decomposed into P' and R'. The plaquettes 
labeled P6 to P26 form part of the ribbon P'. We write O~R, OzR for the 
boundaries of R, with similar notation for the boundaries of R' and P'. The 
linking number of the boundaries of P' is - 1 .  

L e m m a  5.1. We have 

Lk(Ol R, O,_R) = Lk(Ol R', OzR' ) + Lk(Ot P', O,_P') (5.2) 

Proof. In the projection shown in Fig. 5, orient the two ribbon boun- 
daries in parallel, producing two negative crossings formed by the curves 
O,R,O,_R. By passing O~R through OzR locally, change one of these 
negative crossings to a positive crossing. This removes a full negative twist 
from the ribbon R producing a ribbon which is ambient isotopic to R'. 
Hence 

Lk(Oi R, O,R) = Lk(01R', 02R')-  1 (5.3) 

and the lemma follows since Lk(OiP', O,_P')= -1.  | 

Let (ILkl),, be the expectation of ILk[ over the set of orientable 
closed ribbons with n plaquettes. Then we have the following result. 

T h e o r e m  5.2. We have 

(ILk(O, R, OzR)I ) >/A x/~ (5.4) 

for some positive constant A, and n sufficiently large. 

Proof. The proof is an adaptation of the proof of Theorem 1 in 
ref, 20. Consider the prime pattern P shown in Fig. 5. By reflecting in the 
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x- plane we obtain the mirror image pattern P*. The 3-balls B3(p) and 
B3(p *) formed by taking the union of the dual 3-cubes to the vertices of 
each of these patterns are congruent. If the pattern P occurs k times in an 
orientable closed ribbon R, then the linking number of the boundary 
curves of R can be written as l - k ,  where l is the linking number of the 
boundaries of the ribbon obtained from R by k decompositions each of 
which gives rise to a translate of P'. A similar operation can be carried out 
for P*; and the corresponding ribbon P*'  has linking number + 1. The two 
patterns P and P* are equally likely to occur in a ribbon. Theorem 3.4 
implies that there exist positive numbers e and y such that, for a fraction 
1-exp(-  yn + o(n)) of the set of orientable closed ribbons with n plaquettes, 
there are at least [_en_] pairwise disjoint translates of the 3-ball B3(p) each 
of which intersects the ribbon in a translate of P or P*. Since P and P* are 
binomially distributed in these 3-balls the probability that P occurs exactly 
k times among the Lena occurences of either P or P* is bounded above by 
1 / L x / ~ ,  for every k~<[_enJ, for sufficiently large n. For  each of these 
ribbons the linking number Lk is the sum of two terms, the first coming 
from the union of the en occurrences of P or P* and the second from the 
remainder of the ribbon. If the linking number is less than some given 
number f (n) ,  then the contribution from the LenJ occurrences of P or P* 
must be one of at most F2f(n) + lq different values. Hence 

Prob( ILkl < f (n ) )  ~< (1 - e-~" +"("~)f-2.f(n) + 1-] 
~L,~nJ (5.5) 

Clearly Prob(ILkl < f ( n ) ) ~ O  as n ~  oo if f ( n ) = o ( x / ~ ) .  The theorem 
follows immediatley. | 

The n dependence of the linking number has been investigated using 
a Monte Carlo approach, and the numerical results suggest that the bound 
given by Theorem 5.2 may be best-possible? 8~ 

If the boundaries of the ribbon are unknotted then the only link types 
of the two boundary curves are the (2, 2k)-torus links, and the relative 
frequency of occurrence of ribbons with linking number 0, 1, and 2 has 
been investigated numericallyJ 8~ However, if the boundaries are knotted 
(both with knot type r), then the link type of the two boundary curves will 
be a (2, 2k) satellite link of the center knot 3. 

We have an analogous result for the linking of a boundary of an 
orientable ribbon with the centerline of the ribbon. If Lk(O~ R, C(R)) is the 
linking number of the boundary at R and the centerline C(R), then we have 
the following result. 
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Theorem 5.3. We have 

(ILk(0, R, C(R))I ),,/> ,40 ~ (5.6) 

for some positive constant Ao and n sufficiently large. 

Proof. The proof follows from Theorem 5.2 by a pushoff of the 
boundary 02R to the centerline C(R) across the ribbon. | 

In the case of a nonorientable ribbon R, the single boundary curve OR 
can also be linked with the centerline C(R), and the corresponding theorem 
is as follows. 

Theorem 5.4. We have 

(ILk(OR, C(R))I ),, >~ A~ x/~ (5.7) 

for some positive constant A~, and n sufficiently large. 

Proof This can be proved by a similar argument to that used in the 
proof of Theorem 5.2. | 

Linking of the boundary curve with the centerline ensures that the 
boundary of the nonorientable ribbon is knotted even when the center line 
is unknotted. The knot type of the boundary is then a (2, 2k+ 1)-torus 
knot. We know from Theorem 4.4 that, for sufficiently large 17, the 
centerline is knotted with high probability, and the linking of the boundary 
and centerline then determines which satellite of the knot type of the 
centerline occurs. There are two factors which each lead to increased knot 
complexity--the knot type of the centerline and the linking of the 
boundary and the centerline. 

6. TWIST AND WRITHE OF ORIENTABLE CLOSED RIBBONS 

The linking number considered in the previous section, is a topological 
quantity, invariant under ambient isotopy. For any smooth orientable 
closed ribbon the linking number of the two boundary curves can be 
written as the sum of two geometrical quantities, the twist (Tw) of one 
boundary curve (A) about the other (B), and the writhe (Wr) of B. (21) 

Twist characterizes the local crossings between the two boundary curves, 
and writhe characterizes the distant, or nonlocal crossings of one boundary 
curve with itself. These quantities have proved useful in describing the con- 
formational properties of duplex DNA molecules. 12"7) In particular, the 
writhe is a measure of the degree of supercoiling of the DNA molecule. 
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We first consider the definition of the writhe of a curve. Consider any 
simple closed curve in R 3, and project it onto R 2 in some direction .#. In 
general the projection will have crossings and, for almost all projection 
directions, these crossings will be transverse, so that we can associate a sign 
+ 1 or - 1 with each crossing, as in Fig. 4. For  this projection we form the 
sum of these signed crossing numbers and average over all projection direc- 
tions .~'. This average quantity is the writhe Wr of the curve. ~51 

For a smooth ribbon the twist Tw(A, B) of boundary curve A about 
boundary curve B can be defined as a certain line integral along B. I-'2~ The 
linking number, twist, and writhe of a smooth ribbon are related by the 
conservation equation fS 21. 231 

Lk(A, B)= Tw(A, B)+ Wr(B) (6.1) 

For  a PL curve in Z 3 the writhe can be defined as above, but its com- 
putation is simplified by a theorem of Lacher and Sumners, I-'41 which 
reduces the writhe computation to the average of the linking numbers of 
the given curve with four pushoffs, one into each of four of the eight 
octants, with no two of the four octants being chosen to be mutually 
antipodal. For ribbons in Z 3 we define the twist of one boundary (A) 
about the other (B) to be 

Tw(A, B) = Lk(A, B) - Wr(B) (6.2) 

so that White's theorem, Eq. (6.1), is automatically satisfied. In this section 
we discuss the asymptotics of the twist and writhe of a lattice ribbon. 

There is a theorem for the writhe of a boundary curve of a ribbon, 
corresponding to Theorem 5.2. We consider an orientable closed ribbon R 
which contains the pattern P defined above. R has two boundary curves, 
O~R and O,R. We choose O1R to be that boundary which contains 
the subboundary Pl of P. Decomposing R into P' and R' as described in 
the previous section, we call OIP' the boundary of P' consisting of the 
intersection of P' and R together with the additional edge required to form 
a polygon. Similarly 01R' is the boundary of R' consisting of the intersec- 
tion of R' and R together with the additional edge required to form a 
polygon. 

Lemma 6.1. We have 

Wr(OIR)= Wr(O, R') + Wr(OiP') (6.3) 

Proof. The proof is similar to that of Lemma 2 in ref. 20. We com- 
pute the writhe of 01R by considering the linking number of 01R with its 
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Fig. 6. The boundary O~ P' of tile ribbon P', projected in the xz plane, and its pushoff in 
direction ( 1, 1, I ). The filled circles indicate a change in the .1, coordinate. 

four pushoffs in directions ( 1, 1, 1 ), ( 1, - 1, 1 ), ( - 1, 1, 1 ), and ( - 1, - 1, 1 ). 
We first note  that the linking number  of 0~ P'  with its pushoff  in each of 
these directions is - 1, - 1, 0, and 0, respectively. We consider the pushoff  
O~R+ of 0~R in the direction (1, 1, 1). Inside the 3-ball B3(P ') there are 
six crossings between ~ i R + and 0 ~ R, four of  which are ( - ) crossings, and 
two of which are ( + )  crossings. By a small move inside B3(p') ,  which does 
not change the remainder  of 0~ R + and 0, R, we can change one of the 
( - )  crossings to a ( + )  crossing. The resulting pair of curves is ambient  
isotopic to the pair {OiR' +, 81R' }. See Fig. 6. Hence 

Lk(O L R, O~ R +  ) = Lk(c3~ R', c3tR' + ) - 1 

= L k ( c 3 t R ' , a ~ R ' + ) + L k ( O ~ P ' , O I P ' + )  (6.4) 

We obtain an identical relation by considering a pushoff  in direction 
( 1 , -  1, 1), and when we consider pushoffs in directions ( - 1 ,  1, 1) and 
( - 1, - 1, 1 ) we find that the pair {0~ R + ,  01 R} is ambient  isotopic to the 
pair  {O~R'+,a~R'} ,  without  any crossing change being required. 
Therefore  

Wr(O~R)= Wr(O~R')+�88  - 1 + 0 + 0 )  

= Wr(OIR')+ Wr(O~P') (6.5) 

which proves the lemma. II 

T h e o r o m  6.2. We have 

(1Wr[) , ,  >~ B x /~  (6.6) 

for some positive constant  B, for n sufficiently large. 

Proof. The p roof  follows from Lemma 6.1 and an argument  identical 
to that  used in the p roof  of  Theorem 5.2. i 

The additivity (under  decomposi t ion)  of the linking number  (Lemma 
5.1) and the writhe (Lemma 6.1), together with the definition of twist 
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[Eq. (6.2)], immediately implies the additivity of twist under decomposi- 
tion. The twist of one boundary of P' about the other can easily be seen 
to be -�89 so that each occurrence of the pattern P gives a negative con- 
tribution to the twist of the ribbon, and each occurrence of the mirror 
image of P gives a corresponding positive contribution. This leads to a 
lower bound on the expectation of the absolute value of the twist, 
analogous to Theorem 5.2 for linking number. 

T h e o r e m  6.3. We have 

( ITwl) , ,  > / C x / ~  (6.7) 

for some positive constant C, and ii sufficiently large. 

Proof. The proof follows from the additivity of twist, together with 
the pattern theorem and a coin-tossing argument, as in the proof of 
Theorem 5.2. l 

f J 

J 

Fig. 7. Cases in which the top plaquette has only one edge in the plane x = x m'~. 
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Fig. 7. 

f :  , t /  f f 

I I I  I 

I I ,,,11 e / I  ... 

Contimted) 

. . . ,--i,f , /  f ~ f 

Fig. 8. Cases in which the top plaquette is an ordinary plaquette and lies in the plane 
.v= .v ' ' x .  The bonds marked with a thicker line denote the edges shared by the top plaquette 
with its neighboring plaquettes. These two constructions are valid regardless of  the orienta- 
tions of  the neighboring plaquettes. 
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Similar theorems to Theorems 6.2 and 6.3 can be proved for the writhe 
of the centerline and for the twist of one boundary about  this centerline, for 
an orientable ribbon. 

7. D I S C U S S I O N  

We have discussed the asymptotic behavior of the numbers of lattice 
ribbons with 17 plaquettes, where the ribbon is open, or closed and 
orientable, or closed and nonorientable. We have shown that the numbers 
of ribbons of these three types grow at the same exponential rate, and have 
derived bounds on the value of the growth constant p. The lower bound is 
not much smaller than the numerical estimate of p =4.33 ___ 0.20. ~8~ 

We have proved a pattern theorem for ribbons, which establishes that 
certain types of patterns appear with positive density in all except expo- 
nentially few sufficiently long ribbons, and we have used this to establish 
that the boundary curves of closed ribbons are knotted with probability 1 
in the n ~ ~v limit. In addition, we have shown that the knot complexity 
(measured in various ways) diverges as 17 increases. 

We have derived lower bounds on the expectation of the absolute 
value of the linking number  and twist of the two boundary curves of an 
orientable closed ribbon and on the writhe of one of the boundary curves, 
and showed that the behavior of the lower bounds is asymptotically the 
same for the three quantities. This was observed numerically ~8~ for the 
linking number  and the writhe, and the estimated rates of increase were 
found to be close to the lower bounds which we have derived. 

There are a number of interesting open questions. We have no 
estimate of the constant which appears in the growth rate of the knot 
probability. It would be useful to have upper and lower bounds on this 
quantity, and Monte Carlo methods could be used to provide a numerical 
estimate. In addition, it would be interesting to have upper bounds on the 
rate of increase of the expectation of the absolute value of the linking 
number, twist, and writhe. 

We have focused on asymptotic properties of the ribbon, but there 
is an active area of research which addresses questions about  knotting, 
writhing, etc., in models of short DNA rings. ~7~ There are interesting 
calculations of knot probability as a function of the effective diameter of 
the DNA (which is designed to account for electrostatic repulsion), ~25~ and 
calculations which take more direct account of ionic strength effects (at the 
level of a screened Coulomb model)J 26"27~ In addition there are estimates 
of the writhe (and of its mean square) as a function of linking deficit ~28" 29~ 
and ionic strength. <25" 271 
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Fig. 9. 
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Cases in which the top plaquette is a corner  plaquette and lies in the plane x =.v  m"~, 

APPENDIX 

In this appendix we describe a construction which converts any closed 
ribbon with n plaquettes into a modified closed ribbon with n + 2 /  
plaquettes and which preserves the orientability of the ribbon. The 
particular construction described requires / = 6 .  We concentrate on the 
rightmost plane of the ribbon and the top plaquette, but an analogous con- 
struction applies to the leftmost plane and the bottom plaquette. 

The argument is by case analysis. The top plaquette can have either 
one edge or four edges in the plane x = x  m'~, we consider these cases 
separately. In the first case we have to consider 24 possible different con- 
figurations. For our purposes, configurations obtained by a 180 ~ rotation 
around an axis perpendicular to the plane are equivalent, so the number of 
configurations to consider is reduced to 12. These 12 cases are illustrated 
in Fig. 7. The top plaquette is marked by a dot in the middle of the 
plaquette. In each case one plaquette is removed, and 13 plaquettes are 
added. It is easy to check that the orientability of the ribbon is unchanged. 

If the top plaquette has four edges in the plane x = x m"x, we proceed 
as follows. We define a corner plaquette to be a plaquette such that its two 
neighboring plaquettes share a vertex. Otherwise the plaquette is an 
ordinao' plaquette. If the top plaquette is an ordinary plaquette, we have 
one of the two cases shown in Fig. 8. If the top plaquette is a corner 
plaquette, then the possible situations are shown in Fig. 9. 
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